Faster integer-feasibility in mixed-integer linear programs by branching to force change
نویسندگان
چکیده
منابع مشابه
Faster integer-feasibility in mixed-integer linear programs by branching to force change
Branching in mixed-integer (or integer) linear programming requires choosing both the branching variable and the branching direction. This paper develops a number of new methods for making those two decisions either independently or together with the goal of reaching the first integer-feasible solution quickly. These new methods are based on estimating the probability of satisfying a constraint...
متن کاملPresolving Mixed-Integer Linear Programs
We survey the techniques used for presolving Mixed-integer linear programs (MILPs). Presolving is an important component of all modern MILP solvers. It is used for simplifying a given instance, for detecting any obvious problems or errors, and for identifying structures and characteristics that are useful for solving an instance.
متن کاملActive-constraint variable ordering for faster feasibility of mixed integer linear programs
The selection of the branching variable can greatly affect the speed of the branch and bound solution of a mixed-integer or integer linear program. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We present a new approach that relies on estimating the impact of the candidate variables on the active constr...
متن کاملAnalyzing Infeasible Mixed-Integer and Integer Linear Programs
Algorithms and computer-based tools for analyzing infeasible linear and nonlinear programs have been developed in recent years, but few such tools exist for infeasible mixed-integer or integer linear programs. One approach that has proven especially useful for infeasible linear programs is the isolation of an Irreducible Infeasible Set of constraints (IIS), a subset of the constraints defining ...
متن کاملInequalities for Mixed Integer Linear Programs
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Operations Research
سال: 2011
ISSN: 0305-0548
DOI: 10.1016/j.cor.2010.10.025